Homework \#1: Dynamic Programming
 ECON 6313
 Benjamin Keen

1. Each period, a household seeks to maximize its expected lifetime utility:

$$
\sum_{t=0}^{\infty} \beta^{t} \frac{C_{t}^{1-\sigma}}{1-\sigma}
$$

subject to its asset accumulation equation and its initial level of assets, A_{0} :

$$
\begin{gathered}
A_{t+1}=R\left(A_{t}-C_{t}\right), \\
A_{0}=\bar{A}_{0},
\end{gathered}
$$

where C_{t} is consumption, A_{t} is assets, R is the constant gross nominal interest rate, $0 \leq \beta<1$ is the discount factor, and $\sigma>0$ is a preference parameter. In your answer, assume that

$$
R^{1-\sigma}<1 / \beta
$$

and

$$
\lim _{T \longrightarrow \infty}\left(\frac{1}{R}\right)^{T} A_{t+T}=0
$$

(a) State the household's problem using the Bellman equation. Next, form the Lagrangian for the household's problem via the Bellman equation, where λ_{t} is the Lagrange multiplier on the household's asset accumulation equation. Lastly, find the first-order conditions with respect to C_{t}, A_{t+1}, and λ_{t}.

Answer

The Bellman equation is

$$
V\left(A_{t}\right)=\frac{C_{t}^{1-\sigma}}{1-\sigma}+\beta V\left(A_{t+1}\right)
$$

subject to

$$
A_{t+1}=R\left(A_{t}-C_{t}\right)
$$

The Lagrangian is

$$
£=\frac{C_{t}^{1-\sigma}}{1-\sigma}+\beta V\left(A_{t+1}\right)+\lambda_{t}\left[R\left(A_{t}-C_{t}\right)-A_{t+1}\right] .
$$

The first-order conditions with respect to C_{t}, A_{t+1}, and λ_{t} are

$$
\begin{gathered}
C_{t}^{-\sigma}=\lambda_{t} R, \\
\beta V^{\prime}\left(A_{t+1}\right)=\lambda_{t}, \\
A_{t+1}=R\left(A_{t}-C_{t}\right) .
\end{gathered}
$$

(b) Derive the Benveniste-Scheinkman condition. In your answer, specify the values of $V^{\prime}\left(A_{t}\right)$ and $V^{\prime}\left(A_{t+1}\right)$.
Answer
Substitute the asset constraint equation into the Bellman equation:

$$
V\left(A_{t}\right)=\frac{C_{t}^{1-\sigma}}{1-\sigma}+\beta V\left(R\left(A_{t}-C_{t}\right)\right)
$$

Next, totally differentiate the resulting equation:

$$
V^{\prime}\left(A_{t}\right)=C_{t}^{-\sigma}+\beta V^{\prime}\left(A_{t+1}\right) R-\beta V^{\prime}\left(A_{t+1}\right) R .
$$

Since $C_{t}^{-\sigma}=\beta R V^{\prime}\left(A_{t+1}\right)$, the Benveniste-Scheinkman condition becomes

$$
V^{\prime}\left(A_{t}\right)=+\beta R V^{\prime}\left(A_{t+1}\right)
$$

Since $V^{\prime}\left(A_{t}\right)=C_{t}^{-\sigma} /(\beta R)$ and $V^{\prime}\left(A_{t+1}\right)=C_{t+1}^{-\sigma} /(\beta R)$, the Benveniste-Scheinkman condition becomes

$$
\begin{gathered}
C_{t}^{-\sigma}=\beta R C_{t+1}^{-\sigma} \\
C_{t+1}=(\beta R)^{1 / \sigma} C_{t} .
\end{gathered}
$$

(c) Show the optimal policy functions for C_{t} and A_{t+1} in the form $C_{t}=\left(1-\gamma_{C}\right) A_{t}$ and $A_{t+1}=\gamma_{A} A_{t}$, respectively? In your answer make sure to define γ_{C} and γ_{A}.
Answer
To solve for the optimal policy functions, forward solve for A_{t} using the asset accumulation equation

$$
\begin{gathered}
A_{t+1}=R\left(A_{t}-C_{t}\right) \\
A_{t}=\frac{A_{t+1}}{R}+C_{t} \\
A_{t}=\frac{A_{t+2}}{R^{2}}+C_{t}+\frac{C_{t+1}}{R} \\
A_{t}=\left(\frac{1}{R}\right)^{T} A_{t+T}+\sum_{j=0}^{T-1}\left(\frac{1}{R}\right)^{j} C_{t+j} .
\end{gathered}
$$

Since $\lim _{T \longrightarrow \infty}\left(\frac{1}{R}\right)^{T} A_{t+T}=0$,

$$
A_{t}=\sum_{j=0}^{\infty}\left(\frac{1}{R}\right)^{j} C_{t+j}
$$

Using the Benveniste-Scheinkman condition, $C_{t+1}=(\beta R)^{1 / \sigma} C_{t}$, the value of A_{t} becomes

$$
\begin{aligned}
A_{t} & =\sum_{j=0}^{\infty}\left(\frac{(\beta R)^{1 / \sigma}}{R}\right)^{j} C_{t} \\
A_{t} & =\sum_{j=0}^{\infty}\left(\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right)^{j} C_{t} .
\end{aligned}
$$

Since $\sum_{j=0}^{\infty}\left(\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right)^{j}=1 /\left(1-\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right)$, the value of A_{t} becomes

$$
A_{t}=\frac{1}{1-\beta^{1 / \sigma} R^{(1 / \sigma)-1}} C_{t}
$$

The value of C_{t} is then can be calculated as a function of A_{t}

$$
C_{t}=\left[1-\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right] A_{t}
$$

where

$$
\gamma_{C}=\beta^{1 / \sigma} R^{(1 / \sigma)-1}
$$

Using the asset accumulation equation, $A_{t+1}=R\left(A_{t}-C_{t}\right)$, we get

$$
\begin{gathered}
A_{t+1}=R\left(A_{t}-C_{t}\right) \\
A_{t+1}=R\left(A_{t}-\left(1-\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right) A_{t}\right) \\
A_{t+1}=R\left(\beta^{1 / \sigma} R^{(1 / \sigma)-1}\right) A_{t} \\
A_{t+1}=\beta^{1 / \sigma} R^{1 / \sigma} A_{t}
\end{gathered}
$$

where

$$
\gamma_{A}=\beta^{1 / \sigma} R^{(1 / \sigma)}
$$

2. Consider a Ramsey model where a social planner seeks to maximize utility:

$$
\sum_{t=0}^{\infty} \beta^{t} \ln \left(C_{t}\right)
$$

subject to the economy-wide budget constraint:

$$
K_{t+1}=K_{t}^{\alpha}-C_{t}
$$

where C_{t} is consumption, K_{t} is capital, $0 \leq \beta<1$ is the discount factor, and $0<\alpha<1$. Now, suppose we guess the value function has the following form:

$$
V^{g}\left(K_{t}\right)=E+F \ln \left(K_{t}\right),
$$

where E and F are the parameters that need to be derived.
(a) Using the guess for the value function, state the household's problem using the Bellman equation. Next, form the Lagrangian for the social planner's problem via the Bellman equation, where λ_{t} is the Lagrange multiplier on the economy-wide budget constraint. Lastly, find the first-order conditions with respect to C_{t}, K_{t+1}, and λ_{t}.

Answer

The Bellman equation for the social planner's problem is

$$
V\left(K_{t}\right)=\ln \left(C_{t}\right)+\beta\left[E+F \ln \left(K_{t+1}\right)\right]
$$

subject to

$$
K_{t}^{\alpha}=C_{t}+K_{t+1} .
$$

The Lagrangian is

$$
£=\ln \left(C_{t}\right)+\beta\left[E+F \ln \left(K_{t+1}\right)\right]+\lambda_{t}\left[K_{t}^{\alpha}-C_{t}-K_{t+1}\right] .
$$

The first-order conditions with respect to C_{t}, K_{t+1}, and λ_{t} are

$$
\begin{gathered}
1 / C_{t}=\lambda_{t} \\
\frac{\beta F}{K_{t+1}}=\lambda_{t} \\
K_{t}^{\alpha}=C_{t}+K_{t+1}
\end{gathered}
$$

(b) Find the policy functions for C_{t} and K_{t+1} as a function of K_{t+1} given the guess for the value function.

Answer

Combine the first-order conditions for C_{t} and K_{t+1}

$$
\begin{aligned}
\frac{1}{C_{t}} & =\frac{\beta F}{K_{t+1}} \\
K_{t+1} & =\beta F C_{t}
\end{aligned}
$$

Substitute this equation into the budget constraint to find the policy function for C_{t}

$$
\begin{gathered}
K_{t}^{\alpha}=C_{t}+\beta F C_{t} \\
C_{t}=\frac{K_{t}^{\alpha}}{1+\beta F}
\end{gathered}
$$

Substituting the policy function for C_{t} into the budget constraint to generate the policy function for K_{t+1} :

$$
\begin{gathered}
K_{t}^{\alpha}=\frac{K_{t}^{\alpha}}{1+\beta F}+K_{t+1} \\
K_{t+1}=\frac{B F}{1+\beta F} K_{t}^{\alpha}
\end{gathered}
$$

(c) Compare the new value function with the initial guess and then solve for values of E and F. Using the values for E and F, solve the policy functions for C_{t} and K_{t+1}.

Answer

Substitute the policy functions for C_{t} and K_{t+1} into the Bellman equation assuming that $V^{g}\left(K_{t}\right)=E+F \ln \left(K_{t}\right)$

$$
\begin{gathered}
V\left(K_{t}\right)=\ln \left(\frac{K_{t}^{\alpha}}{1+\beta F}\right)+\beta\left[E+F \ln \left(\frac{B F}{1+\beta F} K_{t}^{\alpha}\right)\right] \\
V\left(K_{t}\right)=\beta E+\ln \left(\frac{1}{1+\beta F}\right)+\beta F \ln \left(\frac{\beta F}{1+\beta F}\right)+\alpha(1+\beta F) \ln \left(K_{t}\right)
\end{gathered}
$$

Thus, F and E equal

$$
\begin{gathered}
F=\alpha(1+\beta F) \\
F=\frac{\alpha}{1-\alpha \beta}
\end{gathered}
$$

and

$$
\begin{gathered}
E=\beta E+\ln \left(\frac{1}{1+\beta F}\right)+\beta F \ln \left(\frac{\beta F}{1+\beta F}\right), \\
E(1-\beta)=\ln (1-\alpha \beta)+\frac{\alpha \beta}{1-\alpha \beta} \ln (\alpha \beta), \\
E=\frac{\ln (1-\alpha \beta)}{1-\beta}+\frac{\alpha \beta \ln (\alpha \beta)}{(1-\alpha \beta)(1-\beta)} .
\end{gathered}
$$

Using the values for E and F, we can derive the policy functions for C_{t} and K_{t+1}

$$
\begin{gathered}
C_{t}=\frac{K_{t}^{\alpha}}{1+\frac{\beta \alpha}{1-\alpha \beta}}, \\
C_{t}=(1-\alpha \beta) K_{t}^{\alpha} . \\
K_{t+1}=\frac{\frac{\alpha B}{1-\alpha \beta}}{1+\frac{\alpha \beta}{1-\alpha \beta}} K_{t}^{\alpha}, \\
K_{t+1}=\alpha B K_{t}^{\alpha} .
\end{gathered}
$$

