Homework #4: Computationally Solving Rational Expectations Models

ECON 6313

Benjamin Keen

(Include copies of all your Matlab code) Let us consider the neoclassical growth model from Homework #3. At any date t, households in the economy gain utility from consumption, C_t , and disutility from labor, N_t . Those preferences are represented by the following utility function:

$$U = \sum_{t=0}^{\infty} \beta^t E_0 \left[\ln(C_t) + \theta \ln(1 - N_t) \right],$$

where β is a discount factor. Households' demands are restricted by their budget constraint:

$$Z_t(K_t)^{\alpha}(N_t)^{1-\alpha} = C_t + K_{t+1} - (1-\delta)K_t,$$

where K_t is capital, α is capital's share of output, and δ is the capital depreciation rate. The parameter Z_t is an exogenous parameter that represents the level of productivity in the economy. That productivity factor is a stochastic process that follows an AR(1) representation:

$$\ln(Z_t/Z^*) = \rho_Z \ln(Z_{t-1}/Z^*) + \eta_t,$$

where Z^* is the steady state value of Z_t and $\eta_t \sim N(0, \sigma^2)$ [Hint: $\ln(Z_t/Z^*) \approx \widehat{Z}_t$]. The parameters are set to the following values: $\alpha = 0.33$, $\beta = 0.99$, $\delta = 0.025$, $\rho_Z = 0.95$, $\sigma^2 = 1$, and $Z^* = 1$. Finally, the time constraint forces the steady state value of labor, N^* , to be between 0 and 1. Since the preference parameter θ is key in determining N^* , a value for θ is selected so that $N^* = 0.2$. That is, N^* is set equal to 0.2 and θ is determined from the first-order condition for labor.

- 1. Using the first-order conditions for C_t , K_{t+1} , N_t , and λ_t from Question 2 part c from Homework #6, find the steady steady state values for C_t , K_t , and λ_t and the value for θ [Hint: Use the first-order condition for N_t to find θ].
- 2. Linearize the first-order conditions for C_t , K_{t+1} , N_t , and λ_t and place them into matrix form: $AE_t\widehat{Y}_{t+1} = B\widehat{Y}_t + C_0\widehat{X}_t + C_1E_t\widehat{X}_{t+1}$, where \widehat{Y}_t is the percent deviation of the endogenous variables from their steady state, and \widehat{X}_t is the percent deviation of the exogenous variable, Z_t , from its steady state [Hint: This is the same answer as in Question 5 from Homework #6]. Use that matrix form and the King and Watson [1998, 2002] Matlab programs to find the rational expectations solution in the state space form: $Z_t = \Pi S_t$ and $S_t = MS_{t-1} + \varepsilon_t$. In your answer, you just need to specify the vectors Z_t and S_t and the resulting matrix Π from the state space solution.
- 3. Suppose there is a positive 1% shock to the technology factor in period 1 (i.e., $\varepsilon_1 = 1$). Plot the impulse response functions for C_t , K_t , and N_t in periods 1 30. Be sure to properly label your graphs. Why is the period 1 response of capital equal to zero?
- 4. Calculate the 3-step ahead forecast error variance for C_t , K_t , and N_t .
- 5. What are the unconditional variances for C_t , K_t , and N_t ?
- 6. Find the correlation between K_t and N_t , $\operatorname{corr}(K_t, N_t)$, and the correlation between K_t and N_{t-1} , $\operatorname{corr}(K_t, N_{t-1})$.