Formula Sheet: Exam \#3

Econ 3133
Dr. Keen

Actual deficit $=$ Structural deficit + Cyclical deficit

$$
\mathrm{D}_{+1}=\mathrm{BD}+\mathrm{D}
$$

$$
\mathrm{CU}=\text { Paper money }+ \text { Coins }
$$

$T R=$ Bank deposits held at the Fed + Vault cash

$$
\begin{gathered}
\mathrm{M}^{\mathrm{B}}=\mathrm{CU}+\mathrm{TR} \\
\mathrm{M}_{1}=\mathrm{CU}+\mathrm{ChD}+\text { Savings accounts }
\end{gathered}
$$

$\mathrm{M}_{2}=\mathrm{M}_{1}+$ small time deposits (CDs) + money market mutual funds

$$
\begin{aligned}
& \mathrm{C}=\mathrm{MPC}_{\mathrm{LR}} \times \mathrm{Y}^{\mathrm{d}} \\
& \Delta \mathrm{C}=\mathrm{MPC}_{\mathrm{SR}} \times \Delta \mathrm{Y}^{\mathrm{d}} \\
& \mathrm{~A}+1=\mathrm{A}+\mathrm{R} \times \mathrm{A}+\mathrm{E}-\mathrm{T}-\mathrm{C} \\
& Y^{d}=R \times A+E-T \\
& \mathrm{~S}=\mathrm{R} \times \mathrm{A}+\mathrm{E}-\mathrm{T}-\mathrm{C} \\
& \mathrm{R}=\mathrm{r}+\pi^{\mathrm{e}} \\
& \mathrm{R}_{\mathrm{K}}=\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}} \\
& \mathrm{R}_{\mathrm{K}}=\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}}-\left(\mathrm{P}_{\mathrm{K}(+1)}-\mathrm{P}_{\mathrm{K}}\right) \\
& \mathrm{I}_{\mathrm{K}}=\mathrm{K}^{*}-\mathrm{K}^{*}{ }_{-1}+\delta_{\mathrm{K}} \times \mathrm{K}^{*}{ }_{-1} \\
& \mathrm{~K}^{*}=v \times \mathrm{Y} \\
& \mathrm{I}_{K}=v \times\left(\mathrm{Y}-\mathrm{Y}_{-1}\right)+\delta_{K} \times v \times \mathrm{Y}_{-1} \\
& \mathrm{I}_{\mathrm{K}}=\mathrm{s} \times\left(\mathrm{K}^{*}-\mathrm{K}-1\right)+\delta_{\mathrm{K}} \times \mathrm{K}-1 \\
& \mathrm{R}_{\mathrm{K}}=\left[(1-z) \times\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}}\right] /[1-u] \\
& \mathrm{R}_{\mathrm{H}}=\left(\mathrm{R}+\delta_{\mathrm{H}}\right) \times \mathrm{P}_{\mathrm{H}} \\
& \mathrm{I}_{\mathrm{H}}=\mathrm{H}^{*}-\mathrm{H}_{-1}+\delta_{\mathrm{H} \times \mathrm{H}_{-1}} \\
& \mathrm{R}_{\text {IN }}=\mathrm{R} \times \mathrm{P}_{\text {IN }} \\
& \mathrm{E}_{\mathrm{R}}=(\mathrm{E} \times \mathrm{P}) / \mathrm{Pw} \\
& \mathrm{ER}_{\mathrm{R}}=\mathrm{q}+\mathrm{qR} \times \mathrm{R} \\
& (X-I M)=\left(g_{E X}-g_{\text {EIM }}\right)-\left(v_{X}+v_{\text {IM }}\right) \times E_{R}-m \times Y_{d}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{TR}=\mathrm{rr} \times \mathrm{ChD} \\
\mathrm{CU}=\mathrm{c} \times \mathrm{ChD} \\
\mathrm{M}^{\mathrm{S}}=[(1+\mathrm{c}) /(\mathrm{rr}+\mathrm{c})] \times \mathrm{M}^{\mathrm{B}}
\end{gathered}
$$

Total reserves $=$ Borrowed reserves + Nonborrowed reserves

$$
\begin{gathered}
\mathrm{OCM}=\mathrm{R}-\mathrm{R}_{\mathrm{M}} \\
\mathrm{M}=\mathrm{Y}_{\mathrm{M}} /(2 \times \mathrm{z}) \\
\mathrm{M}=\left(\left(\mathrm{k} \times \mathrm{Y}_{\mathrm{M}}\right) /(2 \times \mathrm{OCM})\right)^{1 / 2} \\
\mathrm{R}=\pi+\beta_{\pi \times} \times\left(\pi-\pi^{*}\right)+\beta \mathrm{Y} \times\left[\left(\mathrm{Y}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}\right]+\mathrm{r}^{\mathrm{e} *} \\
\mathrm{Y}_{\mathrm{i}}=\mathrm{h} \times\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}^{\mathrm{e}}\right)+\mathrm{Y}_{\mathrm{i}}^{*} \\
\mathrm{P}^{\mathrm{e}}=\mathrm{P}^{\mathrm{f}}+\mathrm{b} \times\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}^{\mathrm{f}}\right) \\
\mathrm{Y}=\mathrm{n} \times \mathrm{h} \times(1-\mathrm{b}) \times\left(\mathrm{P}-\mathrm{P}^{\mathrm{f}}\right)+\mathrm{Y}^{*} \\
\mathrm{~W}=1 / 2 \times\left(\mathrm{X}+\mathrm{X}_{-1}\right) \\
\mathrm{X}=1 / 2 \times(\mathrm{W}+\mathrm{W}+1)-(\mathrm{d} / 2) \times\left[\left(\mathrm{U}-\mathrm{U}^{*}\right)+\left(\mathrm{U}+1-\mathrm{U}^{*}\right)\right]
\end{gathered}
$$

