Formula Sheet: Final

Econ 3133
 Dr. Keen

$$
\mathrm{GDP}=\mathrm{C}+\mathrm{I}+\mathrm{G}+(\mathrm{X}-\mathrm{IM})
$$

National income $=$ Employee compensation + Corporate profits + Proprietors' income + Rental income of persons + Net interest

Net national product $=$ National income + Sales and excise taxes + Business transfers - Net subsidies to government businesses + Statistical discrepancy

Gross national product $=$ Net national product + Depreciation
Gross domestic product $=$ Gross national product - Net factor payments from abroad
Personal income $=$ National income - Contribution for social insurance - Corporate retained earnings + Nonbusiness interest + Transfer payments from government and business

Disposable income $=$ Personal income - Personal income taxes
Government savings $=$ Taxes - Government spending - Transfer payments - Interest on the government debt Private savings $=$ GDP + Net factor payments from abroad + Transfer payments + Interest on the government debt - Taxes - Consumption

National savings $=$ Private savings + Government savings
Direct foreign investment in the U.S. $=-$ Net exports - Net factor payments from abroad
Investment $=$ Private Savings + Government savings + Direct foreign investment in the U.S.
Adult population $=$ Labor force + Not in the labor force
Labor force $=$ Working + Unemployed
Unemployment rate $=($ Unemployed $/$ Labor force $) \times 100$
Labor force participation rate $=($ Labor force/Adult population $) \times 100$

$$
\begin{gathered}
\pi=(\mathrm{P} / \mathrm{P}-1-1) \times 100 \\
\left(\mathrm{Y}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}=-2 \times\left(\mathrm{u}-\mathrm{u}^{*}\right) \\
(\mathrm{Y} / \mathrm{AP})_{\mathrm{n}}=(\mathrm{Y} / \mathrm{AP}) \times(1+\mathrm{G})^{\mathrm{n}} \\
\% \Delta \mathrm{Y}=\% \Delta \mathrm{~A}+(2 / 3) \times \% \Delta \mathrm{~N}+(1 / 3) \times \% \Delta \mathrm{~K} \\
\mathrm{Y}_{\mathrm{d}}=(1-\mathrm{t}) \times \mathrm{Y} \\
\mathrm{C}=\mathrm{a}+\mathrm{b} \times \mathrm{Y}_{\mathrm{d}} \\
\mathrm{I}=\mathrm{e}-\mathrm{d} \times \mathrm{R} \\
(\mathrm{X}-\mathrm{IM})=\left(\mathrm{gX}_{\mathrm{X}}-\mathrm{g}_{\mathrm{IM}}\right)-\left(\mathrm{n}_{\mathrm{X}}+\mathrm{n}_{\mathrm{IM}}\right) \times \mathrm{R}-\mathrm{m} \times \mathrm{Y}_{\mathrm{d}} \\
\mathrm{M}^{\mathrm{S}}=(\mathrm{k} \times \mathrm{Y}-\mathrm{h} \times \mathrm{R}) \times \mathrm{P} \\
\Delta \mathrm{Y}=[1 /(1-\mathrm{b} \times(1-\mathrm{t}))] \times \Delta \mathrm{I}
\end{gathered}
$$

(the same equation holds for a $\Delta \mathrm{a}, \Delta \mathrm{G}$, or $\Delta(\mathrm{X}-\mathrm{IM})$ on the right-hand side)

$$
\Delta Y=[1 /(1-(b-m) \times(1-t))] \times \Delta I
$$

(the same equation holds for a $\Delta \mathrm{a}, \Delta \mathrm{G}$, or $\Delta \mathrm{X}$ on the right-hand side)

$$
\begin{aligned}
& \pi=\pi^{\mathrm{e}}+\mathrm{f}\left[\left(\mathrm{Y}_{-1}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}\right] \\
& \mathrm{C}=\mathrm{MPC}_{\mathrm{LR}} \times \mathrm{Y}^{\mathrm{d}} \\
& \Delta \mathrm{C}=\mathrm{MPC}_{\mathrm{SR}} \times \Delta \mathrm{Y}^{\mathrm{d}} \\
& \mathrm{~A}_{+1}=\mathrm{A}+\mathrm{R} \times \mathrm{A}+\mathrm{E}-\mathrm{T}-\mathrm{C} \\
& \mathrm{Y}^{\mathrm{d}}=\mathrm{R} \times \mathrm{A}+\mathrm{E}-\mathrm{T} \\
& \mathrm{~S}=\mathrm{R} \times \mathrm{A}+\mathrm{E}-\mathrm{T}-\mathrm{C} \\
& \mathrm{R}=\mathrm{r}+\pi^{\mathrm{e}} \\
& \mathrm{R}_{\mathrm{K}}=\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}} \\
& \mathrm{R}_{\mathrm{K}}=\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}}-\left(\mathrm{P}_{\mathrm{K}(+1)}-\mathrm{P}_{\mathrm{K}}\right) \\
& \mathrm{I}_{\mathrm{K}}=\mathrm{K}^{*}-\mathrm{K}^{*}{ }_{-1}+\delta_{\mathrm{K}} \times \mathrm{K}^{*}{ }_{-1} \\
& \mathrm{~K}^{*}=v \times \mathrm{Y} \\
& \mathrm{I}_{\mathrm{K}}=v \times\left(\mathrm{Y}-\mathrm{Y}_{-1}\right)+\delta_{\mathrm{K}} \times v \times \mathrm{Y}_{-1} \\
& \mathrm{I}_{\mathrm{K}}=\mathbf{s \times} \times\left(\mathrm{K}^{*}-\mathrm{K}_{-1}\right)+\delta_{K} \times \mathrm{K}_{-1} \\
& \mathrm{R}_{\mathrm{K}}=\left[(1-z) \times\left(\mathrm{R}+\delta_{\mathrm{K}}\right) \times \mathrm{P}_{\mathrm{K}}\right] /[1-u] \\
& \mathrm{R}_{\mathrm{H}}=\left(\mathrm{R}+\delta_{\mathrm{H}}\right) \times \mathrm{P}_{\mathrm{H}} \\
& \mathrm{I}_{\mathrm{H}}=\mathrm{H}^{*}-\mathrm{H}_{-1}+\delta_{\mathrm{H} \times \mathrm{H}_{-1}} \\
& \mathrm{R}_{\text {IN }}=\mathrm{R} \times \mathrm{P}_{\text {IN }} \\
& \mathrm{E}_{\mathrm{R}}=(\mathrm{E} \times \mathrm{P}) / \mathrm{P}_{\mathrm{W}} \\
& E_{R}=q+q R \times R \\
& (\mathrm{X}-\mathrm{IM})=(\mathrm{gEX}-\mathrm{gEIM})-\left(\mathrm{vX}+\mathrm{VIM}^{2}\right) \times \mathrm{ER}_{\mathrm{R}}-\mathrm{m} \times \mathrm{Y}_{\mathrm{d}}
\end{aligned}
$$

Actual deficit $=$ Structural deficit + Cyclical deficit

$$
\begin{gathered}
\mathrm{D}_{+1}=\mathrm{BD}+\mathrm{D} \\
\mathrm{CU}=\text { Paper money }+ \text { Coins }
\end{gathered}
$$

$\mathrm{TR}=$ Bank deposits held at the Fed + Vault cash

$$
\begin{gathered}
\mathrm{M}^{\mathrm{B}}=\mathrm{CU}+\mathrm{TR} \\
\mathrm{M}_{1}=\mathrm{CU}+\mathrm{ChD}+\text { savings accounts }
\end{gathered}
$$

$\mathrm{M}_{2}=\mathrm{M}_{1}+$ small time deposits (CDs) + money market mutual funds

$$
\begin{aligned}
& \mathrm{TR}=\mathrm{rr} \times \mathrm{ChD} \\
& \mathrm{CU}=\mathrm{c} \times \mathrm{ChD}
\end{aligned}
$$

$$
\mathrm{M}^{\mathrm{S}}=[(1+\mathrm{c}) /(\mathrm{rr}+\mathrm{c})] \times \mathrm{M}^{\mathrm{B}}
$$

Total reserves $=$ Borrowed reserves + Nonborrowed reserves

$$
\begin{gathered}
\mathrm{OCM}=\mathrm{R}-\mathrm{R}_{\mathrm{M}} \\
\mathrm{M}=\mathrm{Y}_{\mathrm{M}} /(2 \times \mathrm{z}) \\
\mathrm{M}=\left(\left(\mathrm{k} \times \mathrm{Y}_{\mathrm{M}}\right) /(2 \times \mathrm{OCM})\right)^{1 / 2} \\
\left.\left.\mathrm{R}=\pi+\beta_{\pi} \times\left(\pi-\pi^{*}\right)+\beta_{\mathrm{Y} \times[(\mathrm{Y}}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}\right]+\mathrm{r}^{\mathrm{e} *} \\
\mathrm{Y}_{\mathrm{i}}=\mathrm{h} \times\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}^{\mathrm{e}}\right)+\mathrm{Y}_{\mathrm{i}}{ }^{*} \\
\mathrm{P}^{\mathrm{e}}=\mathrm{P}^{\mathrm{f}}+\mathrm{b} \times\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}^{\mathrm{f}}\right) \\
\mathrm{Y}=\mathrm{n} \times \mathrm{h} \times(1-\mathrm{b}) \times\left(\mathrm{P}-\mathrm{P}^{\mathrm{f}}\right)+\mathrm{Y}^{*} \\
\mathrm{~W}=1 / 2 \times\left(\mathrm{W}+\mathrm{W}+1 / 2 \times\left(\mathrm{X}+\mathrm{X}_{-1}\right)-(\mathrm{d} / 2) \times\left[\left(\mathrm{U}-\mathrm{U}^{*}\right)+\left(\mathrm{U}+1-\mathrm{U}^{*}\right)\right]\right. \\
\mathrm{M}^{\mathrm{B}}=\mathrm{Domestic} \text { credit }+ \text { Foreign reserves } \\
\mathrm{Stress}=\mathrm{R}^{\mathrm{E}}-\mathrm{R} \\
\mathrm{R}=\pi+\beta_{\pi \times} \times\left(\pi-\pi^{*}\right)+\beta \mathrm{Y} \times\left[\left(\mathrm{Y}-\mathrm{Y}^{*}\right) / \mathrm{Y}^{*}\right]+\mathrm{r}^{\mathrm{r} *}-\beta_{\mathrm{E}} \times \mathrm{E}_{\mathrm{R}}
\end{gathered}
$$

