Formula Sheet: Final Econ 3133 Dr. Keen

$$GDP = C + I + G + (X - IM)$$

National income = Employee compensation + Corporate profits + Proprietors' income + Rental income of persons + Net interest

Net national product = National income + Sales and excise taxes + Business transfers – Net subsidies to government businesses + Statistical discrepancy

Gross national product = Net national product + Depreciation

Gross domestic product = Gross national product – Net factor payments from abroad

Personal income = National income - Contribution for social insurance - Corporate retained earnings + Nonbusiness interest + Transfer payments from government and business

Disposable income = Personal income - Personal income taxes

Government savings = Taxes – Government spending – Transfer payments – Interest on the government debt

Private savings = GDP + Net factor payments from abroad + Transfer payments + Interest on the government debt - Taxes - Consumption

National savings = Private savings + Government savings

Direct foreign investment in the U.S. = – Net exports – Net factor payments from abroad

Investment = Private Savings + Government savings + Direct foreign investment in the U.S.

Adult population = Labor force + Not in the labor force

Labor force = Working + Unemployed

Unemployment rate = (Unemployed/Labor force)×100

Labor force participation rate = (Labor force/Adult population)×100

$$\pi = (P/P_{-1} - 1) \times 100$$

$$(Y - Y^*)/Y^* = -2 \times (u - u^*)$$

$$(Y/AP)_n = (Y/AP) \times (1 + G)^n$$

$$\%\Delta Y = \%\Delta A + (2/3) \times \%\Delta N + (1/3) \times \%\Delta K$$

$$Y_d = (1 - t) \times Y$$

$$C = a + b \times Y_d$$

$$I = e - d \times R$$

$$(X - IM) = (g_X - g_{IM}) - (n_X + n_{IM}) \times R - m \times Y_d$$

$$M^S = (k \times Y - h \times R) \times P$$

$$\Delta Y = [1/(1 - b \times (1 - t))] \times \Delta I$$

(the same equation holds for a Δa , ΔG , or $\Delta (X - IM)$ on the right-hand side)

$$\Delta Y = [1/(1 - (b - m) \times (1 - t))] \times \Delta I$$

(the same equation holds for a Δa , ΔG , or ΔX on the right-hand side)

$$\pi = \pi^{e} + f[(Y_{-1} - Y^{*})/Y^{*}]$$

$$C = MPC_{LR} \times Y^d$$

$$\Delta C = MPC_{SR} \times \Delta Y^d$$

$$\mathbf{A}_{+1} = \mathbf{A} + \mathbf{R} \times \mathbf{A} + \mathbf{E} - \mathbf{T} - \mathbf{C}$$

$$Y^d = R \times A + E - T$$

$$S = R \times A + E - T - C$$

$$R = r + \pi^e$$

$$R_K = (R + \delta_K) \times P_K$$

$$R_K = (R + \delta_K) \times P_K - (P_{K(+1)} - P_K)$$

$$I_K = K^* - K^*_{-1} + \delta_K \times K^*_{-1}$$

$$K^* = v \times Y$$

$$I_K = \nu \times (Y - Y_{-1}) + \delta_K \times \nu \times Y_{-1}$$

$$I_K = s \times (K^* - K_{-1}) + \delta_K \times K_{-1}$$

$$R_K = [(1-z)\times(R+\delta_K)\times P_K]/[1-u]$$

$$R_H = (R + \delta_H) \times P_H$$

$$I_H = H^* - H_{-1} + \delta_H \times H_{-1}$$

$$R_{IN} = R \times P_{IN}$$

$$E_R = (E \times P)/P_W$$

$$E_R = q + q_R \times R$$

$$(X-IM) = (g_{EX} - g_{EIM}) - (v_X + v_{IM}) \times E_R - m \times Y_d$$

Actual deficit = Structural deficit + Cyclical deficit

$$D_{+1} = BD + D$$

$$CU = Paper money + Coins$$

TR = Bank deposits held at the Fed + Vault cash

$$M^B = CU + TR$$

$$M_1 = CU + ChD + savings accounts$$

 $M_2 = M_1 + \text{small time deposits (CDs)} + \text{money market mutual funds}$

$$TR = rr \times ChD$$

$$CU = c \times ChD$$

$$M^{S} = [(1+c)/(rr+c)] \times M^{B}$$

Total reserves = Borrowed reserves + Nonborrowed reserves

$$\begin{split} OC_M &= R - R_M \\ M &= Y_M/(2 \times z) \\ M &= ((k \times Y_M)/(2 \times OC_M))^{1/2} \\ R &= \pi + \beta_\pi \times (\pi - \pi^*) + \beta_Y \times [(Y - Y^*)/Y^*] + r^{e*} \\ Y_i &= h \times (P_i - P^e) + Y_i^* \\ P^e &= P^f + b \times (P_i - P^f) \\ Y &= n \times h \times (1 - b) \times (P - P^f) + Y^* \\ W &= \frac{1}{2} \times (X + X_{-1}) \\ X &= \frac{1}{2} \times (W + W_{+1}) - (d/2) \times [(U - U^*) + (U_{+1} - U^*)] \\ M^B &= Domestic \ credit + Foreign \ reserves \\ Stress &= R^E - R \end{split}$$

 $R = \pi + \beta_{\pi} \times (\pi - \pi^*) + \beta_{Y} \times [(Y - Y^*)/Y^*] + r^{e*} - \beta_{E} \times E_{R}$