Dr. Keen

Answers

1.

a. Endogenous: Y, C, I, (X -IM$), \mathrm{R}, \mathrm{E}$.

Exogenous: G, $\mathrm{M}^{\mathrm{S}}, \mathrm{P}, \mathrm{P}_{\mathrm{w}}$.
b. $\quad \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+(\mathrm{X}-\mathrm{IM})$
$=(220+0.63 \times \mathrm{Y})+(400-2,000 \times \mathrm{R}+0.1 \times \mathrm{Y})+\mathrm{G}+[600-0.1 \times \mathrm{Y}-100 \times(0.75+5 \times \mathrm{R})]$
$=1145+0.63 \times \mathrm{Y}-2,500 \times \mathrm{R}+\mathrm{G}$, or,
IS: $R=0.458-0.000148 \times \mathrm{Y}+0.0004 \times \mathrm{G}$.
$M^{S}=(0.1583 \times Y-1,000 \times R) \times P$
$\mathrm{LM}: \mathrm{R}=0.0001583 \times \mathrm{Y}-0.001 \times \mathrm{M}^{\mathrm{S}} / \mathrm{P}$.
Solving the IS and LM equations for R and Y gives
$\mathrm{AD}: \mathrm{Y}=1,495.2661+1.30591 \times \mathrm{G}+3.26477 \mathrm{M}^{\mathrm{S}} / \mathrm{P}$.
So, if $\mathrm{G}=1,200, \mathrm{M}^{\mathrm{S}}=900$, and $\mathrm{P}=1$, then $\mathrm{Y}=6000.65, \mathrm{C}=4,000.41, \mathrm{R}=0.0499=$ $4.99 \%, \mathrm{I}=900.25,(\mathrm{X}-\mathrm{IM})=-100.02$, and $\mathrm{E}=0.9995$.
c. Use the already derived AD equation above. When $\mathrm{G}=1200$ and $\mathrm{M}^{\mathrm{S}}=900$, the AD equation becomes $\mathrm{Y}=3,062.3581+2,938.293 / \mathrm{P}$.

d. If G decreases by $\$ 10$ billion, according to the AD equation, national income Y will decrease by $\$ 13.059$ billion. So the new level of national income will be $\mathrm{Y}=\$ 5,987.59$. Using the LM equation and the new value of Y and remembering that $\mathrm{M} / \mathrm{P}=900$, the new value of R can be found. $\mathrm{R}=0.0478=4.78 \%$. Using the new values of Y and R , the new values of C, $\mathrm{I},(\mathrm{X}-\mathrm{IM}$), and E can be obtained. $\mathrm{C}=3,992.18, \mathrm{I}=903.09$, (X -IM) $=-97.59$, and $E=0.9892$. Notice that the sum of C, I, G, and $(X-I M)$ is $\$ 5,987.68$, which is approximately equal to $\mathrm{Y}=\$ 5,987.59$. If money supply, M^{S}, increases by $\$ 20$, then Y would rise by $\$ 65.30$ billion so that the new value of Y would be $\$ 6,065.95$ billion. The value of the remaining endogenous variables can also be calculated. $\mathrm{C}=$ $4,041.55, \mathrm{R}=0.0402=4.02 \%, \mathrm{I}=926.12, \mathrm{E}=0.9512$, and $\mathrm{X}=-101.71$. Notice that $\mathrm{C}+$ $\mathrm{I}+\mathrm{G}+(\mathrm{X}-\mathrm{IM})=6,065.95$, which is the same as the value of the new Y .
2. $\mathrm{Y}_{\mathrm{d}}=0.7 \times \mathrm{Y}=0.7 \times 6,000.65=4,200.46$.
$S_{p}=Y_{d}-C=4,200.46-4,000.41=200.05$
$\mathrm{S}_{\mathrm{g}}=\mathrm{t} \times \mathrm{Y}-\mathrm{G}=0.30 \times \mathrm{Y}-\mathrm{G}=1,800.20-1,200=600.20$.
$\mathrm{S}_{\mathrm{w}}=-(\mathrm{X}-\mathrm{IM})=100.02$.
Hence, $\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{g}}+\mathrm{S}_{\mathrm{w}}=200.05+600.20+100.02=900.27 \approx 900.25=\mathrm{I}$.
When $\mathrm{G}=1,190$ (and $\mathrm{M}^{\mathrm{S}}=900$), then:
$Y_{d}=0.7 \times Y=0.7 \times 5,987.59=4,191.31$.
$\mathrm{S}_{\mathrm{p}}=\mathrm{Y}_{\mathrm{d}}-\mathrm{C}=4,191.31-3,992.18=199.13$
$\mathrm{S}_{\mathrm{g}}=\mathrm{t} \times \mathrm{Y}-\mathrm{G}=0.30 \times \mathrm{Y}-\mathrm{G}=1,796.28-1,190=606.28$.
$\mathrm{S}_{\mathrm{w}}=-(\mathrm{X}-\mathrm{IM})=97.59$.
Hence, $\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{g}}+\mathrm{S}_{\mathrm{w}}=199.13+606.28+97.59=903.00 \approx 900.09=\mathrm{I}$.
And when $\mathrm{M}^{\mathrm{S}}=920$ (and $\mathrm{G}=1,200$):
$\mathrm{Y}_{\mathrm{d}}=0.7 \times \mathrm{Y}=0.7 \times 6,065.95=4,246.17$.
$S_{p}=Y_{d}-C=4,246.17-4,041.55=204.62$
$\mathrm{S}_{\mathrm{g}}=\mathrm{t} \times \mathrm{Y}-\mathrm{G}=0.30 \times \mathrm{Y}-\mathrm{G}=1,819.79-1,200=619.79$.
$\mathrm{S}_{\mathrm{w}}=-(\mathrm{X}-\mathrm{IM})=101.71$.
Hence, $\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{g}}+\mathrm{S}_{\mathrm{w}}=204.62+619.79+101.71=926.11 \approx 926.12=\mathrm{I}$.
3.
a. If Japanese investors expected the value of the dollar (against the yen) to fall by more than 5%, they would prefer holding the Japanese securities.
b. Certainly, for the same reasons. If the yen is expected to appreciate by more than 5%, then the percentage return in dollars to holding the Japanese securities will exceed 10%.
c. 0%.
4. Lowering interest rates will lead to a depreciation of the dollar, which increases net exports. Thus a policy which increases M and decreases G will have the desired effect.

