Short-Run Fluctuations

There are two key questions that we have not answered yet.

- A. What forces push GDP away from its potential?
- B. Why does it take the economy several years to return to potential GDP after a shock?

Forces that Push the Economy off its Growth Path

- A. Differences between the long run and short run
 - 1. Prices are completely flexible in the long run but are unresponsive in the short run.
 - 2. GDP (Y) is at its potential (Y*) in the long run but is demand determined in the short run.
 - 3. As the economy transitions from the short run to the long run, prices gradually adjust and Y slowly returns to Y*.
- B. The aggregate demand (AD) curve
 - 1. The AD curve is the relationship between the price level (P) and output (Y) demanded.
 - 2. The short run level of Y is determined from the AD curve given P.
 - 3. In the long run, P adjusts so Y returns to Y*.

4. Graph of an aggregate demand curve

- a. In the short run, the price level (P_A) and the AD curve's position determines output (Y_A) .
- b. In the long run, P adjusts to P_B so that Y returns to Y^* .

- C. Events that move the Y away from Y*
 - 1. Any event that shifts the AD curve
 - a. Ex. Suppose AD curve shifts leftward to AD_B . In the short run, Y falls from Y* to Y_B while P remains at P_A.

b. The AD curve shifts due to include changes in monetary or fiscal policy or exogenous shifts in C, I, or (X - IM).

- 2. Any event that shifts the price level
 - a. Ex. Suppose P rises from P_A to P_B. In the short run, Y falls from Y* to Y_B.

b. Changes in world prices, especially oil prices, are the most common sources of price shocks.

Aggregate Demand and Spending Decisions

- A. In the short run, spending decisions by people determine the amount of goods produced by firms.
- B. Firms usually operate with some excess capacity so that they can meet unexpected demand increases.
- C. Thus, spending decisions (NOT resource constraints) determine Y in the short run.
- D. Aggregate demand is the sum of all spending (and output) in the economy given P.
- E. While firms adjust prices as production changes, the adjustment in prices lags production changes so prices are "sticky" in the short run.

Balancing Income and Spending: the Consumption Function

- A. Income (Y), disposable income (Y_d), and taxes (T).
 - 1. Recall, the definition for disposable income

$$Y_d = Y - T \tag{1}$$

2. We will assume taxes are given by a proportional income tax so that the government's tax revenue is

$$T = t \times Y \tag{2}$$

where $0 \le t \le 1$ is the income tax rate.

3. When we substitute (2) into (1), the relationship between Y and Y_d is as follows

$$Y_d = (1 - t) \times Y$$

B. The <u>income identity</u> says income equals total spending in the economy. (spending balance)

$$Y = C + I + G + (X - IM)$$

C. The consumption function is a description of total consumption demanded in the economy:

$$C = a + b \times Y_d$$
.

- 1. There is a stable positive relationship between C and Y_d.
 - a. C is dependent on Y_d.
 - b. Y_d is independent of C.
- 2. Autonomous consumption, (a)
 - a. a captures all influences on C except Y_d.
 - b. *a* is the intercept on the consumption function.
 - c. a > 0.
 - d. a is shifted by changes in expectations or net worth.

- 3. Marginal propensity to consume, (MPC = b).
 - a. b is the fraction of additional Y_d that is consumed.
 - b. b is the slope of the consumption function.
 - c. $0 \le b \le 1$.
- 4. Consumption function graph

Disposable income

5. By substituting in $Y_d = (1 - t) \times Y$ into the consumption function, C can be written in terms of income (Y):

$$C = a + b \times (1 - t) \times Y.$$

- a. $b \times (1-t)$ is the slope of the consumption function (when Y is on the X-axis).
- b. Consumption function graph

A Basic Model of Income Determination

A. Initial assumptions

- 1. C is a function of a, b, t, and Y.
- 2. I, G, and (X IM) are determined outside the model. (i.e., exogenous variables)
- 3. C and Y are determined inside the model. (i.e, endogenous variables)
- B. Algebraic solution for Y and C.
 - 1. Two initial equations
 - a. Income identity

$$Y = C + I + G + (X - IM)$$

b. Consumption function

$$C = a + b \times (1 - t) \times Y$$

2. Combine these two equations to get

$$Y = a + b \times (1 - t) \times Y + I + G + (X - IM).$$

3. Solving for Y

$$Y = a + b \times (1 - t) \times Y + I + G + (X - IM)$$

$$Y - b \times (1 - t) \times Y = a + I + G + (X - IM)$$

$$Y \times [1 - b \times (1 - t)] = a + I + G + (X - IM)$$

$$Y^{**} = [a + I + G + (X - IM)]/[1 - b \times (1 - t)].$$

4. C is determined by plugging in Y**.

$$C^{**} = a + b \times (1 - t) \times Y^{**}.$$

- C. Graphical analysis of spending balance
 - 1. At spending balance, income = spending
 - 2. The income-spending graph has 2 intersecting lines.
 - a. Spending line

$$Y = a + b \times (1 - t) \times Y + I + G + (X - IM)$$

b. A 45° line that signals all the points where spending equals income.

3. Income-spending graph

Spending

- a. Income = spending at Y^{**}
- b. a + I + G + (X IM) is the intercept.
- c. $b \times (1 t)$ is the slope.

- d. Factors that shift the spending line up (down)
 - 1. An increase (decrease) in <u>net worth</u> (assets liabilities) causes *a* (autonomous consumption) to rise (fall).
 - 2. Expectations of higher (lower) Y in the future increases (decreases) capital demand in the future, which causes I to rise (fall).
 - 3. Lower (higher) <u>interest rates</u> decrease (increase) borrowing costs for investment goods so I rises (falls).
 - 4. An increase (decrease) in <u>foreign income</u> causes X to rise (fall) because foreigners have more (less) money to spend on U.S. exports.
 - 5. A lower (higher) exchange rate makes U.S. goods less (more) costly overseas and foreign goods more (less) costly in the U.S. so X rises (falls) and IM falls (rises).

- D. The effect of a decrease in I on Y. [The exact same results hold for a change in a, G or (X IM).]
 - 1. The drop in I, decreases Y, causing C to fall due to the MPC (b), which causes Y to decline further.
 - 2. $Y \downarrow > I \downarrow$
 - 3. The larger the MPC, the greater the fall in Y.

4. The impact of a fall in I on the income-spending graph. Spending

- a. The spending line shifts down by ΔI .
- b. Y is reduced by

$$\Delta \mathbf{Y} = [1/(1 - \mathbf{b} \times (1 - \mathbf{t}))] \times \Delta \mathbf{I}$$

5. The spending multiplier

$$\Delta Y = [1/(1 - b \times (1 - t))] \times \Delta I$$

- a. A large MPC (b) and a small marginal tax rate (t) will maximize the size of the spending multiplier.
- 6. The same spending multiplier holds for a change in a, G and (X IM).
- 7. Example I

Let
$$b = 0.8$$
 and $t = 0.25$

Suppose I falls by 20. Calculate the change in Y?

$$\Delta Y = [1/(1 - b \times (1 - t))] \times \Delta I$$

$$= [1/(1 - 0.8 \times (1 - 0.25))] \times (-20)$$

$$= [1/(1 - 0.6)] \times (-20)$$

$$= 2.5 \times (-20)$$

$$= -50$$

8. Example II

Let
$$b = 0.75$$
 and $t = 0.20$

Suppose the government wants Y to rise by 125. How much will it have to increase G?

$$\Delta Y = [1/(1 - b \times (1 - t))] \times \Delta G$$
 $125 = [1/(1 - 0.75 \times (1 - 0.2))] \times \Delta G$
 $125 = [1/(1 - 0.6)] \times \Delta G$
 $125 = 2.5 \times \Delta G$
 $\Delta G = 125/2.5$
 $\Delta G = 50$

A Model of Income Determination with Variable Net Exports

A. Initial assumptions

- 1. I and G are determined outside the model.
- 2. C, Y, and (X IM) are determined inside the model.

B. Net exports

1. Exports (X) are independent of Y.

$$X = X$$

2. Imports (IM) rise as Y_d increases. [Recall, $Y_d = (1 - t) \times Y$] $IM = m \times (1 - t) \times Y$

where m is the marginal propensity to import, which is the fraction of additional Y_d that is spent on imports.

3. The net exports function

$$(X - IM) = X - m \times (1 - t) \times Y$$

- C. Algebraic solution for Y, C and (X IM).
 - 1. Three initial equations
 - a. Income identity

$$Y = C + I + G + (X - IM)$$

b. Consumption function

$$C = a + b \times (1 - t) \times Y$$

c. Net exports function

$$(X - IM) = X - m \times (1 - t) \times Y$$

2. Combine these three equations and solve for Y**

$$Y = a + b \times (1 - t) \times Y + I + G + X - m \times (1 - t) \times Y$$

$$Y - b \times (1 - t) \times Y + m \times (1 - t) \times Y = a + I + G + X$$

$$Y \times [1 - (b - m) \times (1 - t)] = a + I + G + X$$

$$Y ** = [a + I + G + X]/[1 - (b - m) \times (1 - t)]$$

3. C** is determined by plugging in Y**

$$C^{**} = a + b \times (1-t) \times Y^{**}$$

4. (X - IM) is determined by plugging in Y^{**}

$$(X-IM)^{**} = X - m \times (1-t) \times Y^{**}$$

D. Income-spending graph with variable net exports

Spending $Y = a+b\times(1-t)\times Y + I+G+X-m\times(1-t)\times Y$ Y^{**} a+I+G+X $Slope = (b-m)\times(1-t)$ Y^{**} Y^{**} Income

- 1. a + I + G + X is the intercept.
- 2. $(b-m)\times(1-t)$ is the slope.
- 3. Slope of the spending line is flatter with variable net exports, $[(b-m)\times(1-t)]$, than in the original model with fixed net exports, $[b\times(1-t)]$. That is,

$$(b-m)\times(1-t) < b\times(1-t)$$

4. The spending multiplier with variable net exports is

$$\Delta Y = [1/(1 - (b - m) \times (1 - t))] \times \Delta I$$

- a. The spending multiplier with variable net exports is smaller than the spending multiplier with fixed net exports.
- b. The same spending multiplier holds for a change in a, G, or X.
- c. A large MPC (b), a small marginal tax rate (t), and a small marginal propensity to import (m) will maximize the size of the spending multiplier.

E. An example of the open-economy spending multiplier

Let G rise by 50
$$b = 0.85$$
, $m = 0.05$, and $t = 0.25$

Calculate change in Y?

$$\Delta Y = [1/(1 - (b - m) \times (1 - t))] \times \Delta G$$

$$= [1/(1 - (0.85 - 0.05) \times (1 - 0.25))] \times 50$$

$$= [1/(1 - 0.8 \times 0.75)] \times 50$$

$$= [1/(1 - 0.6)] \times 50$$

$$= 2.5 \times 50$$

$$= 125$$

Numerical Problem

Suppose that the economy is given by

$$Y = C + I + G + (X - IM)$$
 $C = a + b \times (1 - t) \times Y$
 $X - IM = X - m \times (1 - t) \times Y$
Let $I = 900$, $G = 1200$, $X = 500$, $A = 200$, $A = 0.9$, $A = 0.9$, $A = 0.9$, $A = 0.1$.

A. Calculate equilibrium GDP?

$$Y = a + b \times (1 - t) \times Y + I + G + X - m \times (1 - t) \times Y$$

$$Y = [a + I + G + X]/[1 - (b - m) \times (1 - t)]$$

$$Y = [200+900+1200+500]/[1-(0.9-0.1) \times (1-0.25)]$$

$$Y = [2800]/[1 - (0.8) \times (0.75)]$$

$$Y = 2800 \times 2.5$$

$$Y^{**} = 7000$$

B. Calculate consumption?

$$C = a + b \times (1 - t) \times Y^{**}$$
 $C = 200 + 0.9 \times (1 - 0.25) \times 7000$
 $C = 200 + 0.675 \times 7000$
 $C^{**} = 4925$

C. Calculate net exports?

$$(X - IM) = [X - m \times (1 - t) \times Y^{**}]$$

 $(X - IM) = [500 - 0.1 \times (1 - 0.25) \times 7000]$
 $(X - IM) = [500 - 525]$
 $(X - IM)^{**} = -25$

D. Calculate private savings?

$$S_p = Y_d - C^{**}$$

$$S_p = (1 - t) \times Y^{**} - C^{**}$$

$$S_p = 0.75 \times 7000 - 4925$$

$$S_p = 5250 - 4925$$

$$S_p = 325$$

E. Calculate government savings?

$$S_g = t \times Y^{**} - G$$

 $S_g = 0.25 \times 7000 - 1200$
 $S_g = 1750 - 1200$
 $S_g = 550$

F. Calculate direct foreign investment in the U.S.?

$$S_{w} = -(X - IM)**$$

 $S_{w} = 25$