Financial Markets and Aggregate Demand

This lecture integrates two key financial variables into our discussion of spending balance.

- A. Interest rate
- B. Money supply

The Interest Rate's Effect on Spending

- A. The investment function
 - 1. Investment (I) depends negatively on the interest rate (R). $[R\uparrow \to I\downarrow]$
 - a. A higher R increases borrowing costs, which discourages firms from investing.
 - b. Even if I is self-financed, firms must forgo the R earned on financial securities to fund I.

2. The algebraic description

$$I = e - d \times R$$
.

- a. d > 0 is the sensitivity of investment to the interest rate.
- b. e > 0 is autonomous investment. (i.e., the level of investment if the interest rate is zero) This coefficient represents all the factors that affect investment EXCEPT the interest rate.
- c. Graph of the investment function

Investment

3. Example

Let
$$d = 2,000$$
 and $e = 1,000$
 $I = 1,000 - 2,000 \times R$.

If R is 5% then I equal to

$$I = 1,000 - 2,000 \times (0.05)$$
$$I = 900$$

4. The interest rate, R, used in the investment demand function is an average of many interest rates in the economy.

- B. The net exports function, (X IM)
 - 1. Higher U.S. interest rates encourage foreigners to save in U.S. assets, which drives up the value of the dollar.
 - a. This makes U.S. products more expensive overseas so exports (X) declines. $[R \uparrow \rightarrow X \downarrow]$
 - b. This makes foreign products cheaper in the U.S. so imports (IM) rise. $[R\uparrow \to IM\uparrow]$
 - c. $R\uparrow \rightarrow (X-IM)\downarrow$

- 2. The algebraic description
 - a. Exports

$$X = g_X - n_X \times R$$
.

- 1. $n_X > 0$ is the sensitivity of exports to the interest rate.
- 2. $g_X > 0$ is autonomous exports. (i.e., the level of exports if the interest rate is zero) This coefficient represents all the factors that affect exports EXCEPT the interest rate.
- 3. Graph of the exports function

b. Imports

$$IM = g_{IM} + n_{IM} \times R + m \times (1 - t) \times Y.$$

- 1. $n_{IM} > 0$ is the sensitivity of imports to the interest rate.
- 2. *m* is the marginal propensity to import.
- 3. $g_{IM} > 0$ is autonomous imports. (i.e., the level of imports if the interest rate and disposable income are zero) This coefficient represents all the factors that affect imports EXCEPT the interest rate and disposable income.

4. Graph of the imports function

Imports

Interest rate

c. Net Exports

$$(X - IM) = (g_X - g_{IM}) - (n_X + n_{IM}) \times R - m \times (1 - t) \times Y.$$

Net exports

$$(g_{X}-g_{IM}) - \\ m\times(1-t)\times Y$$

$$Slope = -(n_X+n_{IM})$$

$$(X-IM)=(g_X-g_{IM})-(n_X+n_{IM})\times R$$

$$-m\times(1-t)\times Y$$
 Interest rate

3. Example

Let
$$g_X = 1,000$$
, $g_{IM} = 475$, $n_X = 250$, $n_{IM} = 250$, $m = 0.125$, and $t = 0.20$.
$$(X - IM) = 525 - 500 \times R - 0.125 \times 0.8 \times Y$$

$$(X - IM) = 525 - 500 \times R - 0.1 \times Y$$
 If $R = 0.05$ and $Y = 1,000$
$$(X - IM) = 525 - 500 \times 0.05 - 0.1 \times 1000$$

$$(X - IM) = 525 - 25 - 100$$

$$(X - IM) = 400$$

The IS and LM curves

A. Equations and assumptions

- 1. Assumptions
 - a. Y, C, I, (X IM), and R are endogenous variables.
 - b. M^S and G are exogenous variables.
 - c. P is predetermined.

2. Five equations

a. Income identity

$$Y = C + I + G + (X - IM)$$
 (1)

b. Consumption function

$$C = a + b \times (1 - t) \times Y \tag{2}$$

c. Investment function

$$I = e - d \times R \tag{3}$$

d. Net exports function

$$(X-IM) = (g_X-g_{IM}) - (n_X+n_{IM}) \times R - m \times (1-t) \times Y$$
 (4)

e. Money demand/money supply equation

$$\mathbf{M}^{S} = (\mathbf{k} \times \mathbf{Y} - \mathbf{h} \times \mathbf{R}) \times \mathbf{P} \tag{5}$$

Recall: $M^D = M^S$

B. The IS curve

- 1. The IS curve shows all the combinations of R and Y that satisfy equations (1) (4).
 - a. The IS curve is downward sloping because a higher R reduces I and (X IM) which pushes down Y through the multiplier process.

b. Increases (decreases) in G, a, e, and g_X , and decreases (increases) in g_{IM} shift the IS curve rightward (leftward).

- 2. Algebraic derivation of the IS curve
 - a. Substitute equations (2) (4) into equation (1) and solve for R:

$$\begin{split} Y &= a + b \times (1 - t) \times Y + e - d \times R + G + (g_X - g_{IM}) - (n_X + n_{IM}) \times R - m \times (1 - t) \times Y, \\ Y &= (a + e + G + g_X - g_{IM}) + (b - m) \times (1 - t) \times Y - (d + n_X + n_{IM}) \times R, \\ R &= [(a + e + G + g_X - g_{IM}) - (1 - (b - m) \times (1 - t)) \times Y] / [d + n_X + n_{IM}]. \end{split}$$

b. The slope of the IS curve is

$$-[1-(b-m)\times(1-t)]/[d+n_X+n_{IM}].$$

c. Large values for b, d, n_X , and n_{IM} and small values for m and t contribute to a fairly flat IS curve (small changes in R have large effects on Y).

- 3. Suppose that R rises from R_A to R_B .
 - a. The higher R reduces I and (X–IM) which causes the intercept of the spending line in the income-spending graph to shift down by

$$\Delta IX = [I_B - I_A] + [(X - IM)_B - (X - IM)_A] = -[d + n_X + n_{IM}] \times (R_B - R_A).$$

b. The lower I and (X-IM) pushes down Y from Y_A to Y_B

$$\Delta Y = (Y_B - Y_A) = [1/(1 - (b - m) \times (1 - t))] \times \Delta IX.$$

$$(Y_B-Y_A) = -[1/(1-(b-m)\times(1-t))]\times[d+n_X+n_{IM}]\times(R_B-R_A).$$

c.
$$R \uparrow \rightarrow I \downarrow \& (X - IM) \downarrow \rightarrow Y \downarrow$$

d. Graphical example of an increase in R from R_A to R_B .

- 4. Suppose that G declines from G_A to G_B .
 - a. The intercept of the spending line in the income-spending graph shifts down by

$$\Delta G = (G_B - G_A).$$

b. Y declines from Y_A to Y_B by

$$\Delta Y = (Y_B - Y_A) = 1/[1 - (b - m) \times (1 - t)] \times \Delta G.$$

c. A decline in G pushes down Y which is represented by a downward shift in the spending line and a leftward shift in the IS curve from IS_A to IS_B . $[G \downarrow \rightarrow Y \downarrow]$

d. Graphical example of a decrease in G from G_A to G_B (the same results hold for a decrease in a, e, and g_X , or an increase in g_{IM}).

C. The LM curve

- 1. The LM curve shows all the combinations of R and Y that satisfy the money demand equation, (5) for a fixed M^S and a predetermined P.
 - a. The LM curve is upward sloping because R must rise in response to an increase in Y to keep money demand (M^D) constant. [recall: $M^S/P = (k \times Y h \times R)$; $M^D = M^S$]

b. Increases (decreases) in M^S and decreases (increases) in P shift the LM curve rightward (leftward).

- 2. Algebraic derivation of the LM curve
 - a. Solve the M^D equation (5) for R

$$R = (k/h) \times Y - (1/h) \times M^{S}/P.$$

b. The slope of the LM curve is

(k/h).

- c. A large value for h and a small value for k result in a fairly flat LM curve.
 - 1. A large h implies that M^D is very elastic to changes in R.
 - 2. A small k implies that M^D is very inelastic to changes in Y.

- 3. Suppose that Y rises from Y_A to Y_B .
 - a. The money demand line shifts from $M^{D'}$ to $M^{D''}$ such that

$$(\mathbf{R}_{\mathbf{B}} - \mathbf{R}_{\mathbf{A}}) = (\mathbf{k}/\mathbf{h}) \times (\mathbf{Y}_{\mathbf{B}} - \mathbf{Y}_{\mathbf{A}})$$

- b. An increase in R caused by a rise in Y is represented by an upward movement along the LM curve. $[Y\uparrow \rightarrow M^D\uparrow \rightarrow R\uparrow]$
- c. Graphical example of an increase in Y from Y_A to Y_B .

- 4. Suppose that M^S declines from M^S' to M^S".
 - a. The M^S curve shifts left and pushes up R from R_A to R_B $(R_B R_A) = -(1/h) \times (M^{S''} M^{S'}).$
 - b. A rise in R caused by a fall in M^S shifts the LM curve from LM_A to LM_B . $[M^S \downarrow \rightarrow R \uparrow]$
 - c. Graphical example of a decrease in M^S from M^{S'} to M^{S''}.

- 5. Suppose that P rises from P_A to P_B .
 - a. The money demand line shifts from $M^{D'}$ to $M^{D''}$ such that $(R_B R_A) = (1/h) \times (P_B P_A)$
 - b. A rise in R caused by a jump in P shifts the LM curve from LM_A to LM_B. $[P\uparrow \to M^D\uparrow \to R\uparrow]$
 - c. Graphical example of an increase in P from P_A to P_B .

D. Combining the IS and the LM curves

1. The intersection of the IS and LM curve shows the combination of R and Y that satisfy equations (1) - (5).

- 2. Algebraic derivation of the IS LM curves
 - a. The equation for the IS curve

$$R = [(a+e+G+g_X-g_{IM}) - (1-(b-m)\times(1-t))\times Y]/[d+n_X+n_{IM}].$$

b. The equation for the LM curve

$$R = (k/h) \times Y - (1/h) \times M^{S}/P.$$

- c. To solve for equilibrium output (Y*), combine the IS and LM equations (This is also called the equation for the aggregate demand curve when a value for P is not given).
- d. To solve for the equilibrium interest rate (R*), substitute Y* into either the equation for the IS or LM curves.
- e. To solve for the equilibrium consumption, C^* , investment, I^* , and net exports, $(X IM)^*$, substitute Y^* and R^* into equations (2) (4), respectively.

The Impact of Policy and Shocks in an IS – LM Model

A. Monetary policy (suppose M^S increases)

1. The increase in M^S shifts the M^S curve right which push down R from R_A to R_B . The lower R raises I and (X - IM) resulting in a rise in Y $(Y_A$ to $Y_B)$ and an upward shift in the spending line. $[M^S \uparrow \to R \downarrow \to I \uparrow \& (X - IM) \uparrow \to Y \uparrow]$

2. The increase in M^S and the resulting rise in Y (Y_A to Y_B) and decline in R (R_A to R_B) are shown by a rightward shift in the LM curve (LM_A to LM_B).

Interest rate

- B. Fiscal policy (suppose G increases)
- 1. A rise in G pushes up Y from Y_A to Y_B and shifts up the spending line. The higher Y increases M^D , which causes R to rise from R_A to R_B . $[G\uparrow \to Y\uparrow \to M^D\uparrow \to R\uparrow]$
- 2. The increase in R leads to declines in I and (X IM) which moderates the increase in Y. Thus, higher G <u>crowds out</u> I.

3. A rise in G and the resulting rise in Y (Y_A to Y_B) and R (R_A to R_B) are shown by the IS curve's (IS_A to IS_B) shift right.

Interest rate

C. Price Level Shock (suppose P increases)

1. The rise in P pushes up M^D , which increases R from R_A to R_B . That higher R leads to declines in I and (X - IM), which lowers Y from Y_A to Y_B . $[P\uparrow \to M^D\uparrow \to R\uparrow \to I\downarrow \& (X - IM)\downarrow \to Y\downarrow]$

2. A higher P causes Y to fall (Y_A to Y_B) and R to rise (R_A to R_B) which leads to the LM curve (LM_A to LM_B) to shift left.

Interest rate

- D. Autonomous Consumption (a) Falls (or $d\downarrow$, $g_X\downarrow$, or $g_{IM}\uparrow$)
- 1. The drop in a pushes down Y from Y_A to Y_B , which reduces M^D . That decline pushes down R from R_A to R_B . $[a \downarrow \to Y \downarrow \to M^D \downarrow \to R \downarrow]$

2. A fall in a and the resulting decline in Y (Y_A to Y_B) and R (R_A to R_B) are shown by the IS curve's (IS_A to IS_B) shift left.

Interest rate

The Aggregate Demand Curve

- A. The aggregate demand curve is the relationship between quantity of output demanded and the price level, holding everything else constant.
- B. Deriving the aggregate demand curve (the price level changes)
 - 1. A rise in P (P_A to P_B) shifts the LM curve leftward (LM_A to LM_B), which causes Y to decrease (Y_A to Y_B) and R to increase (R_A to R_B).
 - 2. Since the change in Y was caused by a change in P, this action is represented by a movement along the AD curve.

3. Graphical example of an increase in P

$$[P\uparrow \to M^D\uparrow \to R\uparrow \to I\downarrow \& (X-IM)\downarrow \to Y\downarrow]$$

- C. Shifting the aggregate demand curve by changing M^S
 - 1. A fall in M^S shifts the LM curve leftward (LM_A to LM_B), which causes Y to fall (Y_A to Y_B) and R to rise (R_A to R_B).
 - 2. Since the change in Y was NOT caused by a change in P, this action is represented by a leftward shift in the AD curve $(AD_A \text{ to } AD_B)$. $[M^S \downarrow \to R \uparrow \to I \downarrow \& (X IM) \downarrow \to Y \downarrow]$

- D. Shifting the AD curve by raising a, e, G, and g_X or reducing g_{IM}
 - 1. A rise in G shifts the IS curve rightward (IS_A to IS_B), which causes Y to increase (Y_A to Y_B) and R to increase (R_A to R_B).
 - 2. Since the change in Y was NOT caused by a change in P, this action is represented by a rightward shift in the AD curve $(AD_A \text{ to } AD_B)$. $[G\uparrow \to Y\uparrow \to M^D\uparrow \to R\uparrow]$

A Review of the Short-Run Model

A. The model has four graphs

- 1. Income/spending graph
- 2. Money demand/money supply graph
- 3. IS LM graph
- 4. Aggregate demand graph

B. The model has five equations

- 1. Income identity: Y = C + I + G + (X IM)
- 2. Consumption function: $C = a + b \times (1 t) \times Y$
- 3. Investment function: $I = e d \times R$
- 4. Net exports function: $(X IM) = (g_X g_{IM}) (n_X + n_{IM}) \times R m \times (1 t) \times Y$
- 5. Money demand/money supply equation: $M^S = (k \times Y h \times R) \times P$

C. Goods Market

- 1. Income/spending graph
- 2. IS curve $[R\uparrow \rightarrow I\downarrow \& (X-IM)\downarrow \rightarrow Y\downarrow]$
- 3. Equations (1) (4)
- 4. Y clears the good market
- 5. Shocks that increase output demand in goods market $[(a\uparrow, e\uparrow, G\uparrow, g_X\uparrow, \text{ or } g_{IM}\downarrow) \rightarrow Y\uparrow]$
 - a. Income spending line shifts up
 - b. IS curve shifts right
 - c. Aggregate demand curve shifts right

D. Money Market

- 1. Money demand/money supply graph
- 2. LM curve $[Y \uparrow \rightarrow M^D \uparrow \rightarrow R \uparrow]$
- 3. Equation (5)
- 4. R clears the good market

- 5. Shocks that increase the interest rate in the money market
 - a. Money supply decreases $[M^S \downarrow \rightarrow R \uparrow]$
 - i. Money supply curve shifts left
 - ii. LM curve shifts left
 - iii. Aggregate demand curve shifts left
 - b. Price level increases $[P \uparrow \rightarrow M^D \uparrow \rightarrow R \uparrow]$
 - i. Money demand curve shifts right
 - ii. LM curve shifts left
 - iii. Upward movement along the aggregate demand curve